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Stochastic Differential Eguations for Neuronal Behaviour

In this article we extend the recent work of Kallianpur and Wolpert

[51 modeling the behavior of neurons by means of stochastic

differential equations on the dual of a nuclear space. The

extensions will cover nuclear spaces of a more general structure and

will apply to models described in terms of more general differential

operators. A second objective of our work is to present a

theoretical framework which will include the model recently proposed

and heuristically investigated by Wan & Tuckwell in (91. We

illustrate our approach and its application by giving a rigorous

treatment of the Wan & Tuckwell model. But first we shall briefly

describe the neurophysiological context. For a more detailed account,

we refer to [51 and the references therein. In our description we

shill follow the introduction in [51.

A neuron is a cell whose principal function is to transmit

information along its considerable length, which often exceeds one

meter. "Information" is represented by changing amplitudes of

electrical 'voltage potentials across the cell wall. A quiescent

' - neuron will exhibit a resting potential of about 60 mY, the inside

more negative than the outside. Under certain circumstances the

voltage potential in the neuron dendrite will rise above a threshold

point at which positive feedback causes a pulse of up to 100 mV to

appear at the base of the dendrite; this pulse is transmitted rapidly

". *** *** .. . . . . . ..- .. . ...................... iI ....... .. - ..-...........
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along the body and down the axon of the cell until it reaches the

so-called *pre-synaptic terminals" at the other end of the neuron.

Here the pulse causes tiny vesicles filled with chemicals called

Oneurotransmitters" to empty into the narrow gaps between the

presynaptic terminals and the dentrites of other neurons. When these

chemicals diffuse across the gap and hit the neighboring neurons'

dendrites, they may cause the voltage potential in these dentrites to

rise above a threshold point and initiate another pulse.

Let j(t,x) represent the difference between the voltage potential at

time t at the location x e x (- surface of the neuron) and the
resting potential of about -60 mY. As time passes, I evolves due to

two separate causes:

(i) Diffusion and leaks: Depending on the nature of X, the

electrical properties of the cell wall may be approximated by

postulating a contraction semigroup (Tt) on L2 (X,T) where P is a

suitable 6-finite measure on X. For example, if X - [0,b], core

conductor theory suggest the semigroup corresponding to the diffusion

equation

* Jt -at + 61t (86> 0)
at

with Neumann (or insulating) boundary conditions at both ends. In

neural material like heart muscle in which electrical signals can

travel more easily in some directions than in others, the Laplacian

should be replaced by a more general second-order elliptic operator.

(ii) Random fluctuations: Every now and then a burst of

"." ~. .-. '..''''' 6 ' ' </..'- ",. " * ,'*. .. *-. *.;., *'.' -'.**, ' : ., .'.g . -.- ,' " < . . '."--
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neurotransmitter will hit some place or another on the membrane and

suddenly the membrane potential will jump up or down by a random

amount at a random time and location. It is believed that these

random jumps are quite small and quite frequent, making it reasonable

to hope that they can be modelqd by a Gaussian noise process; in any

. case the arrivals at distant locations or in disjoint time intervals

are believed to be aproximately independent, justifying their

* modeling as a mixture of Poisson processes or as a generalised

Poisson process.

Taking into account these random fluctuations one arrives at the

following stochastic partial differential equation (SPDE) for

dl(t,x) - AT(t,x)dt + dMt; Yo= initial condition

Here A is a suitable partial differential operator in spatial

coordinates and Mt is an L -semimartingale. However, even for very

- simple choices of A (e.g. A = I-/L in two dimensions; see [81) a

solution may exist only in the form of a generalized stochastic

process i.e. a process taking values in the dual of a space I of

- 'testfunctions". The relevant space of testfunctions can usually not

.* be assumed to be the Schwartz space of all infinitely differentiable

rapidly decreasing functions (see e.g. [51) and therefore we shall

*take I to be a general countably Hilbert nuclear space. The linear

* SPDEs appropriate for this purpose have been investigated in [21

where an existence and uniqueness result is given for equations

driven by a semimartingale on

*. . . . . ... . .
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In (51 a restricted class of differential operators was considered;

* namely those which generate a selfadjoint contraction semigroup whose

resolvent has a power which is Hilbert-Schmidt. In this case there is

*i a canonical nuclear space upon which the SPDE has a very manageable

" form. However, the structure of the nuclear space is completely

de4 mined by the operator A, and therefore we shall present general

results which are independent of the structure of and which will

also permit a wider class of differential operators to be considered.

Kallianpur and Wolpert ([5]) used a Poisson process N(AxBx(O,t]) to

represent the number of voltage pulses of size a e A arriving at
sites x e B C_ X (- surface of the neuron) at times prior to t.

Here, we adopt the point of view that, in practice, one can only

"average" over the sites. Therefore it seems more realistic to assume

that.,the arrival sites are given by "generalized functions"

(distributions) e AC ', rather than by points x on the surface

of the neuron membrane X. As we shall see, this approach will also

offer the advantage of enlarging the class of possible models.

To pursue this idea let us consider a real rigged Hilbert space

C-nHc. ' (see Gel'fand & Vilenkin (3] p-for definition). Let

*i(f') denote the Borel4;-field on I' and recall that 8(1') is the

same whether we use the weakly or the strongly open sets in ' to

define it.

-To avoid possible confusion with inner products we shali adopt the

notation that for *e and e ', [(] will denote the value of

...........•.............................. ... ............
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the functional evaluated at*

~Let A e6 8(P) and'let, for each n e E, n be a C-f inite positive

measure on (jtxA,GCR)xfiCA)) satisfying:

The mapping: Qfn : l[MI -R defined by

( 2 ,n f
Q- J~xA aI bp]J?[y*p dadr?) is continuous on

Let Nn be a Poisson random measure on

* CtxAx[Oc));A(fl)xBCA)x8([O,OD)) with intensity measure Pn~(dadT?) dt

(a e R, q6 A, t e [o,oD)) (see e.g. Ikeda and Watanabe [41, page

* 42).

Let N(dadyqds) =N (dadJqds) IAp (dadq')ds and put

* - fRXAXO,t]aqU+1N(dadq7ds); + e ~

*Let mn e ',and define X (+) =tmn[+J + Y (+,); + e

Then foreach4 e ,-n(+) is a real CADLAG semimartingale satisfying

E(Xn(+) - t2mn[+] 2 + t~n(,).

-. Since Qn is continuous on xj the Kernel theorem for nuclear spaces

(see Gel'fand & Vilenkin [3), page 74) yields the existence of

* r(n) e 2 and C(n) > 0 such that
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+ D.)<C(n)IIII(fl)u eY 4

"We shall henceforth assume that the same r arnd C will do for all

* n e N, i.e. we suppose that there exists r2 e go C > 0 such that

22

(1 ni+, 2 + nf(+,+' ) < Clly' ne x y e ~
r2

From Doob's Martingale inequality we deduce that, f or any T > 0,

Esup (X C4)) < 2C (4T + 2T2  2r g V4
o<t<T 2

and therefore Theorem 111.1.12 and Remark 7 of (21 yields the

existence of q e if, q I r 2 (independent of ni) and a L-q-valued

*CADLAG L2-aemimartingale X~ satisfying X [4J X (+) Vt>0 (a.s.)

+ 4 e ~.Let Xn,T (X T > 0.
t t )te[0 TI

Let m, e ~ and let 4 R - be a continuous bilinear symmetric

*functional satisfying

(2) mC4+J 2 + Q(+',+) < C112
2

It can then be shown that there exists a I-valued process with

* independent increments and characteristic functional given by

exp( itm[4'J - t/2Q(4',4)). This was shown by V. Perez-Abreu [71 for

the case m-0 and a nuclear space of a special structure. The general

* case may be deduced from theorem 111.1.12 in (21. We shall henceforth

* call W a ~'valued Wiener process with parameters m and Q.

It can be shown from (1) and (2) (See [21 theorem 111.1.12 and remark

7) that we may choose q > r2 such that
-'2
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xn'T e D(0,T]Lq) P-a.s. V n e x V T > 0 and

W wT e (OTjf q) P-a.s V T > 0.

Let n denote the measure induced on D([0,T], ,) by Xn'T and let PTLet PT

denote the measure induced on C([0,T],_ )40- DCUO,T],L_) by WT .

= .... 1.0. PROPOSITION:

-* Let Qn mn satisfy (1). Then, for every T> 0, the family Pi : n e N

is tight on D([0,T],E_,).
-q

-" PROOF:

_. By Mitoma, [6], theorem 5.3.2. and remark RI, (page 996/7)it is

-* sufficient to show that

(a) v 4 e X : {xn'T[,] : n e N) is tight on D([0,TJ,R)

and

(b)k>q e 0>00

k < P(sup Ixt[jI > e) < e V n e s
o<t<T

For part (a), by Billingsley [1 theorem 15.3 page 125, it is

sufficient to show that v , e :

.-. .. - . . . . . .

* ZsAX-X .
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(ai) V r+ >0 3 a> 0 • P<sup I xt[ ]l > a) . r V neU
0<t<T

+(aii) , e > o, > 0 3 < e (0,T) 3 no e x:

P(sup mintjt,] - xn  Xn - x[+I) > e) < r V n >no
t z< t< t 2  1 2

and

P(sup . Ixnt 1 - xn.tl _ e) < V n > no
s,te[o, ) - )

' • and

- (s.up . IXn+] -xn[+jl > e) < r+ vn > no

Fix + e 1, and let 1 > 0, e > 0. Then,
1' 1

P(sup IXn[+]l > a) <- n IX~+]l)2

teE0,T] te[0,T]

2 2ri(sup (t + t2 + yt,+,2))

a te[0,T]

2C 2 n
_2 T m [+12 + 4TQn(+,+))

2 T2 + 4T) C 2 n e v (by 1)
a2

fo a22> 2
2 2 2

< q for a2 > (T + 4T)Cll+IIr 2

Next, let D:-(t>0: t1 < t < t2 and t2-t1 < }. Then

1..........................................................-.-........°
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(~sup min{IXCI -0 Xn El4i,IXn (+1- e

teD 12

~e-2 E( sup min( Xn(~ol Xn [0JI,IXn (0] -nol)

teD t t1l 2

< e2E( sup min({IXnC+o] Xn (0112 1IX~ n~ - ,,2

teD t 1 t2

*< e- 2 min(Esup ix n_ 11 2 Esup Xn [+j2)
teD t 1 teD 2.c

< <-misu 2( - t) 2 n,+,2 2) + Esup jy~ n [+] 2

e teD teD1

sup ((t 2 - t) m[]) P Es t 1 - 2
teD tGD 2

*< 2 + 46)CII+I 2 j n > 1 (by (1))

6 2

< vif (12 + 4S 2 2-1.

* Further,

* P:'s [O, IXnt4I -Xn( Ij > e)

;2-E(: eo, jXnEO] _ XnE])2

1 S2mn(o]2 + 4 ,n(+,+)) < 2 (S 2~C(I~~'r
e 2 2
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""p.( 

-- , ]-

< 2e 2  mn ]2  + 4S n (+ ,+ )) < 2e 2  2  + 4S )C 1i+2 V n > 12 2

q r~V n e m if S2 + 4S< 22-

Hence (ai) and (aLL) are satisfied for
S2 + 4S < (21-le- 2c1+ 2 )1, and n , 1. This proves (a).

2 0
r (b): Fix + e and let e,q > o.

C..I

T h e n 'P (s u p IX n [ t] l > e ) < e - 2 E (su p IX n [ l 1 )2teO,T] - te[o,T]

< e 2 2(T2 m [ 2 + 4TQn(+,+))

-< e- 22 (T2  + 4T )cI l lr2  < e 2 2 (T 2  + 4T )c ll+I 2 (by (1))
r2

2
n > 1 if 2111 2 re

q - 2(T2+4T)C

This completes the proof of Proposition 1.0.

I TH"
,., .1 . TH EO REM :

'C

mu -.-. .. '. --.-. ,.,.'J-,-.-.. 
'......'- 

i .:.:.'- -: .- "-'.., -:..-'.-..- 
.' --. ". ... .? .-.-. '.:. ....

". . . . ." - -' " " " "'- - - " " ': " " :- "", .', ,-' " '- . Ja, 
na,, ', n-" ' ' ', - & X d i le
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Suppose that, in addition to assumption (1),

(3) Qir n ) e
n4oo

(4) LAa n0 V q) e |.

(5) mn[] --- m[ I V e t-

Then, for any T > 0, we have

n
P T = > P T o

PROOF:

Fix T > 0. Let t1 < t2 < ... < t [0,T] and *i'l'" °.K e! for

SK e Io fixed.

We must show that

~n r )iK )KM 1x t k 1 k-i converges in distribution to (Wt[ k * k-i

(ii) {PT : n e v) is tight on D([0,T],j ).

(i): The log characteristic function of (X n Kis:.

......... k.. k.....................

, - ° ° , ' '. d ~ w m e . . ' . , ' .- ' - - ' - ' ' - ' . ' . - - ' " - ' - " - " " " . '° " % - " - - . ' , " " " - ° . ° . ' - o " . ' ' " ". ' " " " ' °. ," "*". * * : .'
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K

C(al, .a) [iL t k a k m*kJ +

IA I (e f~I iaflCF iq~(a)J)P (dad q) dsI

K

where V 1 ) :- a k1 (Ot 1()kL. k~k )
k-i

while that of (W~ ki is

C~~a~v...aK)~ k [ ki tkak-kl~ .J (~s,~8] ec

KK

C~a 1reaK - t~l..a) T QIi t a - m[*kIHenc
K~L k kmlmklk

kk-i

KK

J l . at - mal, K )I ii\- m *'-m*+
k-il

IT 70 )RA (iaqCF(s) I)Ppn (dadl)d _+n(~sP~)
p=3

J1QrI(F(),F~s))) -s Q(<)Fs)d

2

t........................... a. * * *

... ... ... ... k* E..k- 
* . . -.

. . .. . . . . .
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K

t I~n + I a[F(s) I 13iA (dadq')ds +
/. k jak1IM*k] I +o j-A

k-i

.

JT 10n(CFs),F(s)) - Q(F(s),F(s))Ids

o2

the first term tends to zero by (5). As for the second term, use (4)

to obtain

(6) li JRA Ilar(F(s)]I13,n(dadq) " 0 V s e [0,T].
n-,o-c

Now, by definition of F(s)

K

Ia][Fs)]l . - IlaI ak1 I[*k]l V s e [0,T].

k-i

Define a* ak sign(akr [4kl). Then

K K K7-- k * *[ - *k)* Z_ Iai lakliTr[qk]I - lal Z__a~k - Ia[ Za__ h

k-l k-i k-i

* so

K

(7) Iar(FCs)i < Iar( L__ a Vkli V s e [0,T].

k-i

K

* But k akk e , so an application of (4) gives

..
o

o-

ez
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K

:n I> JL.^AaT a*k '  I nA(da ) -0 and thus
.k.

K

sup IAlar?[ ak* ' 13,n(Cdad q) < c.

k-1

But then JT JTxAla ?(V 13,nCdadq)ds ---> 0
0 Jln4o

by (6), (7) and the DCT. Further,

nCFls),Fls)) --- ) QCFls),Fls))

for each s e [0,T] by (3) and since Q and Qn satisfy (1) we have

jQn (Fls),F(s)) - Q(F(s)Fls))I < 2COFls)2
r 2

MoreQver, IIF(s) 1i2 ds < c so the DCT gives
Jo 2

0IT In(Fs),F(s)) - Q (F (s) ,F (s))Ids -40

concluding the proof of i).

(ii) By 11) and Proposition 1.0 the family {PT : ne 3i is tightT

*'. on D([OT], q).

'- Let A : 1 - be a linear and continuous, and suppose that A and

" (Tt : t > 0) satisfies:

-A There exists a strongly continuous semigroup [Tt: t>0]

............. . .... ......... .. .. .. . ...
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on H whose generator coincides with A on and such that:

ca) TtI C y t>O

(b) TtI! , 4 is continuous in (, ) y t > 0

(C) t - Tt+ is *C-continuous for every + e .

It is shown in [21 (Theorem 111.1.5) that the SDE on

dXt - A'Xtdt + dxt; X 0 - Y,

where Y is a I'-valued random variable and M - (Mtlt>0 is a '-valued

weak L2-semimartingale, i.e. a I'-valued process such that M t[+1 is a

semimartingale with E(MtC+1) 2 < 0o Vt>0 for each *el, has a unique

"*, CADLAG solution on

* Moredver, the following result, which we restate for the convenience

of the reader, is proved ([21, Theorem 111.2.1):

Let Mn and M be weak '-valued semimartingales satisfying

(*) V T>0 3 qT e o V n e] : MT e D([OT],ucLqT

and

sup E sup 1 n, T, 12 < Co.
new 0<t<T -qT

Let Yn, Y be '-valued random variables satisfying

.................. .o• o . .o. .- . . ...o•. -. . . . o--... •. . . . .. .. .i
,o........ . .. .. .. .. .. .. .. .. .
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) 3 r1 e : sub max{Ei Y ll2 rl 2 < o.

1 0 e

Let T>O and suppose that M n T =U> MT on D([O,T]IqT) as n--co

and that

. n -- > y as n->oo. Then there exists PT e so such that n,T > T

on D([O,T],L T) as n-o, where

n,T and Tdenote the unique CADLAG solutions to

d - ASdt + dMn; Y , O<t<T

respectively

d rt- A'V~tdt + dMt; TO- Y, O<t<T.

* Moreover, Theorem 1.2 remains true if the spaces D([O,TJ, -qT and

-D[0,T], Lq T  are replaced by, C([O,T], LqT,, respectively C([O,T],

-qT 1 ; see [21.

Let in and Jo be 1'-valued random variables, and let n (3 ,t>O

denote the unique solution to the SDE on

dN n. A' n dt + dxn; yn Yn

and let -(t)t> 0 denote the unique solution to

-....................-.. *,0*- *, ** .- *, * - ;...- * ,.- , ...* ... ,........ ......... . ,,.., >.....
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dIrt - A'Irtdt + dWt; - °q

If the operator A is selfadjoint and dissipative (regarded as a
-rdensely defined linear operator on H) with (I-A) being a Hilbert-

Schmidt operator for some r1 > 0, and if I is the nuclear space

generator by (I-A) (i.e. - H: 11 (I-A)rlI2 < co V r e R; see

[51) then the solution may be expanded as a series

•~ j-

(Converging uniformly on [0,T] in the Lq - topology (a.s.) for

every T > 0 and q > rI + r2 ; where * , -\.l; 0 < \ < ... with

Xn -; , o as n -> co, is the eigensystem for A, and where is the

one-dimensional Ornstein-Uhlenbeck process given by

*dqj I\M _X dt + dWt[0j]; q? -~ j

A similar expansion is possible for Xn in this case. We refer to (51
t

for details.

,%

Regardless of the structure of t one can show that whenever A

"- satisfies Al, for every T > 0 there exists PT > 0 such that,

q T e C([O,T], I-pTI (a.s.)

* ****** ****o* ***.. . . . . .. . *. . . . . . . . . .



-where C(0,1], I-pT) denotes the complete metric space of all

continuous functions f: [O,T] - .p and where

T:T ( ]?t)te[O,T] T

- 1.3 -

Suppose that, in addition to (1),

(8) Qn4 4 ) --- > QC4.4) V 4 e t
n->co

(9) li , AlaCr[]13,n(dadi?) - o V I 1

i.

(10) 3 r e U: sup max{EIjjqo 2 'E and11

--- > on ras n D.

(1) mn[, > [1 e

n-co

where ,n,T - ( t(0,T] and

q 0qtteco,T].

PROOF:

• ..,...-°..- ,........'..,,,,.;.,-... ..'. .,... ..,....--.......-.,..."-.....-.'....-,.-.-.....-.....,.-.--,..-..-.-.-.....-..,'..........,..
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(1,(8), (9) and (10) imply that Xn, >WT on D((OT],L..q

T > 0 by theorem 1.1. Moreover, (1) implies condition (*) Theorem

1.2 while (10) supplies the remaining assumption of Theorem 1.2, from

which the conclusion is therefore obtained.

*Next, we shall give conditions under which the processes X nIT will

converge weakly on D([0,TJ,L q) to a process iT constructed from a

Poisson random measure N on LcAx[0,ao) in the same way as Xn was

constructed from Nn.* We shall then invoke theorem 1.2 to give

*sufficient conditions for the weak convergence of n,T on

D([0#T],1 ) to the solution to the SDE driven by X.

*Let m e I' and let Ip be a6-finite measure on (RxA,8B(Rxs(A))

* satisfying

* (lla) M[41 + B(4,) r I411 e

*(11b) JRxA le ~ - I - iaq?[4,]p(dadY?) < oD

where

B(,+ f a a2r?[+2P(dad q); V4 e ~

-,Let N be a Poisson random measure on (RxAx[0,OD),$(3x2i(A)x8i([O,oD)))

*with intensity measure p(dadl?)dt (a e R, qe A, t > 0).
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Define

t - JtxAx[O,T] ar()(dad]qds) - lA(dadT)ds); t> 0; 4 e ,

and Xtc) - tm ) + Yt -

Since the r2 required in (11a) is the same as that of (1), theorem

111.1.12 (b) of [2] implies the existence of a ?_q valued

semimartingale X - (Xt)t>0 satisfying X t[I - X2t(+) (a.s.) for every

. + e 1. For each T > 0 let RT denote the measure induced on

D[0,T)01q) by XT - (Xtlte[0,T]. Then we haves

I. A THEOREM

Let mn and pn satisfy (1). Let m,p satisfy (la,b) and suppose that

"1 x (eiaT[+] iaq[ ] ),Ln(dad T--->*: ( 12) JIA-1-n(dT)->
~n-->co

:.Aeia[] - i - iaqrdA(dadr?) V + e -

(13) Mn(4J - m[4J] V 4 e I.

\n

Then, for every T > 0, PT RT as n 4- co.

:'.T



* PROOF:-

Pui T > 0. Since (1) is assumed to hold {Pn n > 1) is tight on

* D((,T]LE ) by Proposition 1.0. Hence it suffices to show finite
q

* dimensional convergence:

Let 0 < t I** i--lt < T and *k e k - 1..K

*Then the characteristic functions for (XnIT[*J] .O.,XnTC* and
t1 t K ]

(X T 41lI1.**rX T K] are, respectively,

K
C n(alt,.,aK) -exp imn t tk ak +

k-i

0 J RxA (eia[~) 1 -a[~) (ddqns

and

C~al .. a k) exp [im[ I t k a klk +
k-i

IT Rx (e ia q[F (s)J - 1 -iaI (F(s)I)V.(dadrpds

K

khreF-) i By (13) it is enough to show that

lim exp[ (,e iaq([F(s)J 1 - iarqCF(s)3)p'(dadrpd]-

exp FgT JRxA (eiJ[~) 1 -iaT[F(sflja(dadq~ds]



N~ow, F(s) is piecewise constant, i.e. there are 0 s s <.sMT

* and e''' such that

* F(s)-

if s e ~M1J ,T]

* Hence

e ia rJF(s)] 1 - ia1 [F~s)]

M1iaICJ
(e -1- Ca[ S) +

(e M 1- iaT [+]lMJ)CT] (S)

* so

ITeia [F~s)1 1,-n
(ex1 iaJ (F(s)] (dadr )ds=

j -1 (~ fx e'~ - 1 -ia~,y),n (dad] )

1 Isjls s + JRxA (e H -i

-ia7 ~I~r(dadqp1( (S)TJ d

. ~ ~ ~ ~ 1- IT.. . . . . . . . . .



M ( iaT~j 1 iaI (,jDVn(dadrpCs.
'- )RxA - 1 -- 1
4-.

(by (12)

> \> ~ xA (e -1 -iarC+ ]) V (dadq) (s - 1

*(Recall that RxA ... IA(dadrq) is finite by CUb))

= JRX (eia (S)J 1 -iaTqCF~s)])p~dadq~ds,

* concluding the proof.

L,:t ' be a if'-valued random variable and let (9t t> denote

the unique solution to thei ~'valued SDE

dift A'.Stdt + dXt; So=s

1.5. THEOREM

* Let mn and pn satisfy (1), let m,IA satisfy (lla,b) and suppose that

*(12) and (13) hold. Suppose further that

(14) 3 r e N :sup max{EI~nN2rEJil 2~r < CD

n _

and that In -> 10 on

* Then, for any T > 0, 3 PT e u



nT > T on D([O,Tlp), where T - t)te[0,T].

PROOF:

Let T > 0. Recall that q > r2 is such that the canonical injection

4 rq is Hilbert-Schmidt from r *r2 . Let (+j : j e 3) be a CONS

in consisting of elements of . Then note that

;C n , T , + .c u ,, 2 <
E sup Ix iTI112q - E (sup 7 (XF[+D

O_<t<T O<t<T

37sup (Xnc t J)2)(
o<t<T o<t<T t

V 2m n~ j 2 + 4T~n( j,+j )) < (by (1))
Jul

2C(T2v4T) lr4 g 2 2C(T2v4T) 1 ',212 ne N,

. (where II.IHS denotes the Hilbert-Schmidt norm) i.e. ("1 of Theorem

1.2 is satisfied. Moreover, Xn,xT 0xT DI[0,TIq) (P-a.s) by

- assumption and Xn and X are '-valued (weak) L2-semimartingales. By

Theorem 1.4, (1), Clla,b), (12) and (13) imply that XnT U..> XT on
n-)oo

D (E0,TIq). Since also (14) is supposed to hold, the assumptions

*: of Theorem 1.2 are satisfied and the conclusion therefore follows

from this theorem.

, ..,:..-..'+. •' ......', .'...............'...."..................g..... -..... ..... ,.". ... .... .- * .. . 4. - .. . ....,--. ,
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-Next we shall give conditions for the weak convergence of a sequence

Wn of 1'-valued Wiener processes to another '-valued Wiener process

Wr and then employ these together with Theorem 1.2 to giving the

corresponding weak convergence result for the solutions to the SDE's

driven by Wn and W, respectively.

Let, for n e m, mn e and let n : - R be bilinear symmetric

functionals satisfying (1). Let Wn - (Wn)t>0 denote the I'-valued
n n n ...

Wiener process with parameters mn and Bn. (1) implies that Wt e q

t > 0, for some q which does not depend on n e x.

1. 6. THEOREM

Bn anm

Suppose that, in addition to satisfying (1), B and m satisfy

(15) Bn --- > (,,) V e
; n-),oo

(16) mn(,] --- > m[(+ V * e .

Then, for each T > 0, we have Wn'T > WT on C([O,T],I-),
n-o

where WnT - (Wn)t ,TI and Wt is the '-valued Wiener process

introduced on page 6.

PROOF:

By Mitoma, [61 (Theorem 5.3 part 1), it is sufficient to prove that

e.
• ° . . o. . o - . °,0 . . . . .. . . %t a . . . . .



24

* t > 0 :Wn T  n e N) is tight on C([O,ThL q) and

* *o < t, <..<tN < T V *1 I"'1 N e :

(WnT 1).- .> .WT[4I) N
j ji t j j.

The tightness part is proved in the same way as in Proposition 1.0.

Now, a calculation shows that

N
B exp(i ajwfT I*

tt

N N N
SexpEi tjajm[,lj 2 i ttkajakB(j ' J i k)]

j- J-i k-

(by (15) and (16))

1 N N
exp [.i j ta M[* I - 7\ 7- t ta a B.4E i-i 2 i-i/ kiLk. j k j )

N

exp(i a WT)

Letting n _ ( )t>0 denote the unique solution to the SDE on I,:

L 

t 

g

dq Aqdt+d2
," °



and = t)t>0 be the '-valued process introduced on page 16 we

have

p

i. .17. THEORE

Let, in addition to (1). Bn and'mn satisfy (15) and (16) of

theorem 1.6, and suppose that q n and T 0 satisfy

(17) 3 r e V , SUP lexX!!IInI 2 rD EI 0°..r) < and

n

q on Lr"

Then, 'V T > 0 3 PT e if: ,T mu> T on C([0,T],Lpt

where n,T n)t,

PROOF:

By (1), (15) and (16) and theorem 1.6 inT .. > WT on-r n->co

D(E0,TjIq) V t > 0 where q - min(p :4& 2 is Hibert-Schmidt).

Moreover (1) implies (*) of Theorem 1.2 and (17) supplies the

remaining condition of Theorem 1.2 (recall remark 2).

As indicated at the beginning of this section, Kallianpur and Wolpert

([5)] used Poisson random measures .-fined via intensity measures on

(XxY,2(J3xA) where (X,G) is a suitably chosen measurable space,

rather than by mean/covariance measures defined on (xA,S(2)xS(A));

.... .-.- ... °..........-...............-..-.......................-..............."................ . . °%.- . . ,- -

~~~~~~~~~~~~.... .............. . "... ....-.. ." .".".- '..""" """. '""-"*. . .. : 2_

.'. :~~~~~..'.......'.. .. °--.,,.-"-.'- "".'.............-...... ... ,-... ? ' - ,_.. ' 
"

........
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A e 8C6') as we have done it here.

It is therefore natural to address the question of when Kallianpur

and Wolpert's framework is contained in the one we have presented

here.

It is proved in [21 (Chapter IV)"that if H - LC2X,T) for some -

finite measure space (X,T) where X is a -compact topological

Hausdorff space then it is possible to represent the Kallianpur &

Wolpert models in our framework if elements of I are continuous

* functions on X and if, the evaluation functional +: - *(x) is

- continuous on for every x e X

II.TEWA j, TUCKWELL MODEL

Next, we shall apply our results to giving a rigorous formulation and

*. investigation of a model recently proposed by Wan & Tuckwell [9]:

- In order to study the behaviour of the difference V(t,x) at time t

between the so-called resting potential and the actual potential at

' point x on the surface of an infinitely thin cylinder shaped neuron

which receives synaptic stimuli of the finite spatial extent ei at

each of N sites xi, Wan & Tuckwell investigated the model formally

, given by

-' a2V - dWi

- -- v + - + h(xvxi,ei)(.e +,4i

(19) LC~)d
VI0,x) 0 V(t,0) - 0 - V(t,b); V t > 0,

............. ....-...-..................... .. ,..-..........................,.-.,.....,................ ... .. ,.... -:
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where

h(x;xI~ ~ (ie +)X)
e iei ixi-ifxiei)

Cx1,Gi > 0 fixed for i - r**N

and where Wi ; i = 1,...,N are independent standard Wiener processes.

* we, and.4i represent input current parameters and the neuron is

thought of as the interval (0,bI; for some b > 0.

To see how this model can be given a rigorous representation as a

it-valued SDE, 1.t H - L2([O,b]) with inner product denoted by

* <..>~.Let L denote the operator I - -Laplace operator in

one dimension) with Neumann boundary conditions at 0 and b. Then L is

a densely defined positive definite selfadjoint closed linear

* operator on H and admits a CONS { j :j = 0,1,2...) in H consisting

* of eigonvectors of L;

.2 2

*L4~ jj j -0,1,2,..., where X 1. + -r and

Sb-1 /2 if j -0

2 1/2 jirx
C-' Cos(-) if j >1

b b

Further, A :--L is the generator of a selfadjoint contraction

semigroup (T t : t > 0) on H whose resolvent R(X) (XI1 A)_ 1 is

* Silbert-Schmidt on H.
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Letting

:U(e I( -~ +H c Vr eR)

and def ining norms I'1 r; r e R on by

we put Ir equal to the -IrcomiPletion of ~

* Then re - ~ r and if Cdenotes the Frechet topology on generated

by (I*'r : r e R) (i.e. the projective limit topology on 1)) , then

(~,r c ell'.' (where It denotes the strong dual of (1,0') is a

* rigged Hilbert space. Since A - -L. and L is a densely defined

positive selfadjoint closed linear operator on H it is easily seen

* that A and {Tt : t > 0) satisfy Al of section 1.

Moreover, (+j : j 6e ~ Dciu(L) and per construction of

*every element of I is an infinitely differentiable function. Let

*N e 3 fixed, and for each i - l,...,N let e 11. Let-)1 ;

i - 1,...,N be E6-finite measures on R satisfying

R a~ aIi da) < (3 IVil

*and let p be the measure on RxA# where A- (Ji i - re#~

given by
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4 >ix~j; where Sis the point mass at,~

Def ine

- laxA a2J(1~1~aa~;44

i. ak~i(da) j1E41I~[1P1

then Q is a continuous, bilinear symmetric functional on ~,so for

m e !' given, let W - Wt be the I t-valued (actually E. valued for

some q e 0)Wiener process with parameters a and Q

Consider the SDE on

(20) drq t - A I qtdt + dWt, r 0 M 0

Now, W is a weak I '-valued continuous L2 -semimartingale, and since A

and (Tt : t > 0) satisfy Al there is a unique continuous 1'-valued

solution (from (21, Theorem 111.1.5 and Remark 6) given by

flt+1 mW EsT..A+1ds + vWt4 V e (with probability one).

Choosing Yi M <h(.;xi,ei),.>s 1 ,...,N and

(20) is the representation of (19) as an SDE on '.To see that this

is indeed the case, expand
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- Z <,+, +j (converging in (jr))
j-O

(recall that +je e v3)

Then (writing 3e for t and We for Wt)

1+61 ft We(T A'lds + 6e+D<++>

(converging in L2(4,],P)).

Moreover, the series

CO
o: N g(Tt-sA j }ds + W Wjx

F C+jI]+j~
[4--

is convergent in L2 I(,F,P) for every x e [O,b] to a limit Ve(t,x)

satisfying,I
e + Ve(tix) W(x~ (P-a.s.)

.--o

for every * e 1. Let us see that EV (t,x) and VarVe(t,x) actually
agree with the formulae found in (91 by a heuristic argument:

p(30o. -

EVe(tx) - 7 (ft W [Tt Ajlds + Wt[+j])+j(x)4

- 3 f ( -W ws[(t-s + wt[ j1 ]j(x)

., ,,'~~~~~~~~~~~...". . . .... .... •. ... .. . , .. ,-V., .','. % \ . . ., , " ,', , * -" ":' "--,, "" . ' " . .. ... " "-.? . ..'. . ." ";.,i-,
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CD t-)

17 e ]tjds+j Cx)

N CD +JC(X)*J~xji~e) 
-

7(1 - e )

*which is formula C8) page 279 in wan G Tuckwell 19]. Here, as in 19],

O *(xi;eji) -<h(.;xi,e 1 ),+J>H j-e Jjx~
Next,

VarV. (tX) Z te dW8 +]

t -Xk~tS) -

0 dW sC~kJj Cx)+k(x)

J-k( Q(+4.s+J,4+k~)

* ~ 6 +

*~( j-W

....................................................
+.. . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
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N. CO. CO()~()*(~ !)*k(x';e)

i-l j-0 k-0 + X

e- e j+ kt)

which is formula (10) in [9].

Wan & Tuckwell proceed to compute the limit as 6. - 0 Vi

in such a way that e -> ai and ei.4, -) > 0 of EV (trx) and

Var e(t,x)p and they find that these limits correspond to having

*point stimuli (i.e. h~x,x1,61 ) replaced by Sx) ) at each ofxi

This result may be obtained from Theorem 1.7 in the following manner:

For etch i -1,...,N take rb e-1.,wee sfnt

measure on R with compact support.

Noting that every + e I is a continuous function on [0,b] (recall

that f e-Dom(L) and that L is a differential operator) we let 6. - 0

in such a way that e.." - ai. Then

N
lim mC* lim 0<<(;

N x 1  *(ed
-lim +(x r
e14 *ojifx& e
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N

- 2ai+ (xi)

N

-I2a 1i, x+

and

tim. Q e(,,,) -i 2 uWrn
T'T> e1-)'O fxi-e

N i+e a 2
J imi' b 2 e- 2  i x 2 ( L~da)

e > £ xi-ei(X)

N2

S4b3+(x.)2  ~aP(da)

N

- 4b?(S (+)2ia wda)
Ixi R 1

Also,

2. +e(+,#) <

N N

2ei 2 ?
~lo4I+ ~ ~) "H
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< CONSTANT IIII

since 6i. -* ai and 6i -> 0; where CONSTANT is independent of ei, so

condition (1) of section 1 is satisfied. Since the initial condition

is zero, theorem 1.7 yields

* Proposition

As e. -> 0 and eiax - ai we have

1 T  T==> on C([0,T], }_T V T > 0

for some qT > 0, where = (t)t>o is the solution to (20)

corresponding to

N

Q(++) 4, 4 a i(da)

* and

N*" m[ ] = 2a1  x[
.a

2

Now, Take R i(da) = 1 i=l,...,N. Then

"" and

.N

. N CD CD < ,
* Vart1+- 4b 7 <"1>H< k>Hi(x0+0xi)

Jui J-0 k-0 +Xk
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(le

j-0

we get

N *(x.)

(22) EV (t, X) \ 2a +. -( e

i-i j=0

and

(23) VarVe MIX) \ 4b. 7L Lk
i-i i-a k-0 j X

*(22) and (23) are the expressions found by Wan &Tuckwell for point

stimuli at xj;i - 1.*N

* In practice, equation (20) is likely to arise as a limit of equations

where the noise is not . Wiener process, but rather a process

generated by a Poisson random measure in the manner considered in

* section I. As an illustration, take V n to be measures on RxA; where

A 1~ .- .....N) of the form

N
-V n - where
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for each n e 8 and i 1 l,...,N 39Jn is a --finite measure on R such

• "that

" lsup Ra2- " (da) < C < (D ' i ,[,R

Let mn e ' converge weakly to u€" Then there is r e v such that

" mn+ 2 <f 'K' n e V.

*Since

-. i(+1I 2 < (2e 2 1 2 (2e) 2 1112 we get

N
. Imn[+]1 2 + 0n(+,+) imnE 112 + 2

< "°"TAN 111

< TT V n e i; i.e. (1 holds with r2  r.

Let X n > 1 denote the '-valued processes constructed from mn and

,n on p.S/K.

Letting In denote the solution to

d~n -L-n Xn
t - t + dxt

-0
P0

Theorem 1.3 gives the existence of PT such that

,i% ** .. Z.:

* . . -* .*.D..*.
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nT inn> e,T on D((O,TJL

* provided that

*.(24) liii Sal 3#n~da 0 i-

and

(25) 2,n (2  da) 2-/Ii?
(25) lim R i

*i.e. the previously considered process can be thought of as the

limit of solutions to SDE's with Poisson generated noise.

- Physically, this type of weak convergence models a situation in which

the individual current stimuli of the neuron arrive very densely in

* each small time interval so as to create a total contribution to the

- electrical potential which behaves like the continuous Wiener process.

- On the other hand, if (24) and (25) are replaced by

lim liay -- -e

JRm (e 1 _ iay).q 1(da) JR (e iay 1 iayh.J-Ada)

-for all y e R, then theorem 1. 5 gives

~T inin> on D[,ll

* where Seis the process with mean functional me constructed from the
* Poisson random measure with intensity
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N

,e mv exSj
i-i

This latter convergence can be thought of as modelling a situation in

which the individual stimuli received by the neuron do not tend to

arrive very densely packed in each small time interval, but rather

tend to arrive clustered at random points of time.

mI

- 1..D.A
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